Starting today, I will not update this blog any longer. I have imported all legacy posts to Suoritin III (yes, confusing, isn't it?) and continue blogging there. Welcome!


Mapping red-listed rainforest tree species

Rainforest Foundation Norway keeps a red list of tree species. Where do these trees grow?

One of the R packages developed by rOpenSci is rgbif. It's a handy wrapper to the Global Biodiversity Information Facility API. With geolocation data returned by the query, you can plot points on the world map.

Let's start with the list. Instead of using R all the way through, I scraped the HTML table rows with the Google Chrome extension Scraper, and saved data as a spreadsheet on Google Drive. This is the way Scraper works.

As I mentioned in my job blog the other day, one of the many good tutorials out there on using Scraper, is by Jens Finnäs.

Data needs some pruning in this exercise. What you need for the GBIF query, is basically just the Latin names. To make things somewhat simpler, I'll take only the first one mentioned along each species; many have several.

Here is the R code for pruning, and for querying GBIF. The script saves the return data by the tree status, and in two file sets: R data, and GeoJSON. The first ones are used as input for a Shiny web application, where they will be plotted both as an interactive gvisGeoChart by googleVis, and as a static map with the (only slightly modified) gbifmap function from rgbif. The GeoJSON files will be rendered straight from a GitHub Gist. All of this just to demonstrate (foremost to myself!) that there are many ways to plot and serve maps, and that they all have different pros and cons depending on the amount and type of data. The challenge here is that there will be multiple data points on the same geolocation, and the number of different species is rather big too.

Next, the web application. Here is the R code for it, and this is the app itself. The maps served by GitHub: Critically_Endangered, Endangered, Vulnerable, Near_Threatened and Other.

The status Other is named by me. It refers to those rows in the original Foundation table, where no exact two-character status was given.

On the googleVis map, both the size and color of the points reflect the amount of occurrences on that particular location. This is of course repetitive, but I haven't yet find a better solution. Optimally, the color would tell something else, maybe the species. Yet, the tooltip has this information already, so there you are. Note that the country name in the tooltip comes from a yet another scraped file, originating to Wikipedia. Initially, I had in mind fetching the name by querying the acronym against the DBpedia Linked Data, but reverted to scraping. The magnifying glass is a nifty tool of course, but IMHO doesn't add much on the informative side.

The static map gives a quick overview of all species and their location. This works OK when the number is relatively small. However, the more variety there is, the harder it is to discern between different colors. Transparency (alpha) does the best it can to show that indeed there are multiple points on the same spot. With my expanded color palette however, the colors became so elusively light that I was forced to reduce transparency. Although you can customize the gbifmap function, with my limited skills I didn't succeed in passing my own alpha value, so I modified the function accordingly. Note to self: find out the best practise of how this kind of modification should be done.

The GeoJSON maps were a positive surprise. Out of the Gist box, the JavaScript code produces nicely detailed maps, and in hot spots points are clustered. Marker symbols and colors could of course be different across species. Here, I simply use one red park2 marker in all.


Some Europeana AV resources related to Finnish municipalities as RDF triples

In the previous post, I told how I learned to stop being afraid of Europeana and love SPARQL. As a proof, I gathered statistics on how many video resources there are from different Finnish municipalities. Proportionally, taking into account of the number of inhabitants, the #1 video corner in Finland is Saarijärvi. My Finnish readers, please note the EDIT section towards the end of that posting. For some strange reason I first claimed it to be Helsinki. Sorry about that, Saarijärvi.

BTW, did you know that there is a connection between Saarijärvi and Pamela Anderson? I certainly did not.

What is it that is there?

My so-called research problem with Europeana, nicely summarized by Mikko Rinne, was that in most of the cases, the semantic information about the shooting location of the videos was missing. Therefore, I had to query the name of the municipality around several elements like description, title and subject.

The main contributor of Finnish videos in Europeana is KAVA, National Audiovisual Archive of Finland, in cooperation with European Film Gateway. The videos are digitized newsreels from 1943 to 1964, shown at the Elonet site of KAVA. While perusing the site, I noticed that KAVA is currently growdsourcing metadata about Finnish fiction films. This is a wise move. There is only so much resources to put into this kind of work by KAVA itself. Who knows, maybe my exercise is of some help at some stage, although there are strong caveats e.g. due to the clumsy search logic that returns false positives here and there.

There do exists some spatial data too, enriched by Europeana itself I understand. The most interesting metadata element for me was edm:hasMet with the value of GeoNameID of the municipality. The same element is also used for geolocation coordinates, and Europeana offers a neat interactive map interface built upon them.

How can I find out which GeoNameID belongs to which municipality? Luckily, DBpedia has done the job, see e.g. the resource of Saarijärvi and the property list of owl:sameAs.

Some 8% of municipalities lack the ID, but that's good enough for my purposes. With the list of municipality names, I gathered the IDs by querying the SPARQL endpoint of DBpedia. The names themselves I had downloaded previously from the National Land Survey of Finland via the indispensable R package soRvi. With the IDs at hand, I turned to Europeana again. This time, I was interested in how much geonamed items there were in different categories.


Europeana resources are divided in four media types: image, sound, text and video. Here I visualize the raw numbers in few separate graphs, roughly based on the number of items. Otherwise it would be difficult to see any nuances between municipalities. The R code of stacked bars is adapted from the Louhos Datavaalit examples. Note that what I did not succeed in doing yet was to sort the bars based on the size of item counts; maybe some misunderstanding from my part on how the factor levels are working.

The first thing you notice is that text items outnumber all others. As far as I know, they consist mainly of newspaper articles digitized by the National Library of Finland. This is no news (pun not intended). Of all newspapers published in Finland 1771-1900, the Library has already digitized the most.

In the third graph, one municipality stands out: Rauma. Quite a lot of images, even more texts. Interesting. I was born in rural Laitila, located some 30 km SE from Rauma, so of course I was keen on knowing what kind of material Europeana has got in such quantities from such a familiar spot. FYI, Rauma was given town rights in 1442. This small coastal municipality is known of its wooden Old Town, a Unesco heritage site.

Rauma turned out to be two-headed. It was not just my childhood neighbour, Finnish Rauma, but also Norwegian Rauma, established in 1964 and named after Rauma River. The reason for false hits was that the GeoNameID of both places has been saved in all Rauma instances. By mistake, I guess. Anyway, Finland brings texts and Norway images - which is probably just right, Norway is so much more gorgeous.

Under CONSTRUCTion (couldn't resist)

After all Europeana SPARQLing, I decided to try the idea that Mikko had thrown in his blog comment: why not offer links to these resources? Yes, there are false hits - be aware of e.g. Ii, Salo, Rautavaara, Vaala and Kolari for reasons that relate to Finnish language and my REGEX FILTER statements - but the majority should be decent.

Although I've been practising SPARQL queries for some time now, I am a complete newbie when it comes to linked data modeling, RDF and all that jazz. BTW the SPARQL package, contributed by a friend of mine, Tomi Kauppinen, et al. has worked like a charm. So, I ventured along with the help (again) of Bob DuCharme's book and blog. It was actually quite exciting to be able to create new RDF triples with the SPARQL CONSTRUCT statement! Then, when I found rrdf which, out of the box, offers functions to store, combine and save triples, I was ready to try. While at it, I decided to gather data about all AV resources, not just video.

Here they are now, my first RDF triples from my very first in-memory triple store, containing data about Europeana Finnish resources featuring image, sound and video media types. The triples are serialized as RDF/XML and Turtle/N3. RDF/XML was done with the rrdf save.rdf function, and conversion to Turtle/N3 was also easy with the Apache Jena command-line tool rdfcat.

Rauma I left un-tripled - although I could have added an IF function to trap it, and then FILTER out all images and texts.

I would be more than happy if you'd like to comment on anything related to this exercise, especially on the CONSTRUCT part!

The R codes of querying DBpedia and drawing bar charts, and CONSTRUCTing RDF triples.


Videoita Suomen kunnista Europeanassa

Edellisessä postauksessa tein ensimmäisiä hakuja Europeanan SPARQL-palveluun. Kiitos kuuluu Bob DuCharmelle, jonka selkeillä ohjeilla pääsi alkuun. Sittemmin olen tutkinut Europeanaa lisää. Vallan mainiota, että tällainen yhteiseurooppalainen ponnistus on tehty. Rahaa on käytetty hullumminkin. Antoine Isaac ja Bernhard Haslhofer kirjoittavat artikkelissaan Europeana Linked Open Data – data.europeana.eu (PDF):
Europeana is a single access point to millions of books, paintings, films, museum objects and archival records that have been digitized throughout Europe. The data.europeana.eu Linked Open Data pilot dataset contains open metadata on approximately 2.4 million texts, images, videos and sounds gathered by Europeana. All metadata are released under Creative Commons CC0 and therefore dedicated to the public domain. The metadata follow the Europeana Data Model and clients can access data either by dereferencing URIs, downloading data dumps, orexecuting SPARQL queries against the dataset.
Pilotti tarjoaa runsaasti materiaalia mm. SPARQL-kyselyjen treenaamiseen, ei vähiten siksi että metadatamalli on aika mutkikas. Pakko sanoa, että ilman Bobin virtuaalista kannustusta olisin tuskin tohtinut edes yrittää. Kehittäjät tunnustavat tilanteen konferenssiesitelmässä data.europeana.eu, The Europeana Linked Open Data Pilot (Dublin Core and Metadata Applications 2011, The Hague):
Beyond adding extra complexity to the RDF graphs published, the proxy pattern, which was introduced because of the lack of support for named graphs in RDF, is indeed quite a counter-intuitive necessary evil for linked data practitioners — including the authors of this paper [...] We were tempted to make the work of linked data consumers easier, at least by copying the statements attached to the provider and Europeana proxies onto the “main” resource for the provided item, so as to allow direct access to these statements—i.e., not mediated through proxies. We decided against it, trying to avoid such data duplication. Feedback from data consumers may yet cause us to re-consider this decision. On the longer term, also, we hope that W3C will soon standardize “named graphs” for RDF. This mechanism would allow EDM to meet the requirements for tracking item data provenance without using proxies. (s. 100)

Named graphs -käsitteestä tarkemmin ks. Wikipedia. Kotimainen esimerkki nimettyjen graafien toteutuksesta on Aalto-yliopiston Linked Open Aalto.

Finlandia-katsaus 263

Otetaan esimerkkivideo, Kansallisen Audiovisuaalisen Arkiston (KAVA) Finlandia-katsaus 263 vuodelta 1955. Europeanan RDF-tietovarastossa siitä on tallennettu metatietoa kahteen ore:Proxy -solmuun. Toisessa on datan toimittajan (provider) eli KAVAn antamaa tietoa, toisessa Europeanan. Europeanan solmusta löytyvät mm. kaikki sen tekemät lisäykset (enrichments) alkuperäiseen metatietoon, kuten linkitykset KAVAn kertomasta dcterms:created -vuosiluvusta Semium-sanastolla ilmaistuun aikaan ja dc:spatial -paikannimestä GeoNames-tietokantaan. Datan alkuperätiedot (provenance) ovat ore:ResourceMap -solmussa.

Missä itse video sitten on? Sen selvittämiseksi pitää käydä koontisolmussa. Niitäkin on kaksi: datan toimittajan ore:Aggregation ja Europeanan edm:EuropeanaAggregation. Esimerkkivideon ore:Aggregation -tiedoista selviää videon kotisivu edm:isShownAt ja MP4-tiedosto edm:isShownBy. edm:EuropeanaAggregation kertoo videon sivun Europeanan web-portaalissa edm:landingPage.


SPARQL-kyselykielen lisäksi olen jo jonkin aikaa opiskellut R-ohjelmointikieltä. Yksi viime vuosien R-tapauksia Suomessa on ollut avoimen datan työkalupakki soRvi. Päätin kokeilla, miten työskentely sillä sujuu. Tavoite pitää olla: Suomen kartta, jossa väri ilmaisee paljonko Europeanassa on kuntiin liittyviä videoita.

Sorvilla saa kätevästi Suomen kuntien nimet ja kuntarajat. Data tulee Maanmittauslaitokselta (MML). Entä Europeana? Miten nimet on siellä esitetty ja missä? Kahlasin portaalin avulla läpi joukon videoita, ja katsoin metatietoelementtejä sivun lähdekoodissa. Esimerkkivideossa Finlandia-katsaus 263 on useampikin pätkä Helsingistä. Helsinki-sana löytyy perusmuodossa kentistä dc:subject ja dc:description, englanninkielisestä käännöksestä. Muutamissa videoissa näkyi dc:spatial ja sen myötä Europeanan lisäämä GeoNameID. Lisäksi nimi voi esiintyä paitsi varsinaisessa otsikossa dc:title myös vaihtoehtoisessa otsikossa dcterms:alternative (en tiedä miksi).

Suomen kuntien nimissä on runsaasti äännevaihtelua ja taipumista. Syntymäkuntani Laitila ei taivu, mutta nykyinen kotikaupunkini Helsinki taipuu. Kun katsoo kuntaluetteloa, silmissä vilisee lahtia, järviä, lampia, koskia ja jokia. Välissä on kuivaakin maata kuten rantoja, saaria, mäkiä ja niemiä. Taipuvia kaikki.

Rajoitin haut nimen perusmuotoon sillä lisäyksellä, että jos säännöllinen lauseke löytää taipumattomien nimien päätteellisiä muotoja (Oulu, Oulun, Oulussa jne.), hyvä niin. Tällä periaatteella on ilmiselvä kääntöpuolensa. Lyhyet kuten Ii ja Salo tulevat tuottamaan vääriä hakutuloksia sekä Suomesta että muista maista. Ii saa omiensa lisäksi myös Iisalmen ja Iitin videopinnat, mikä on ehkä oikein ja kohtuullista kunnalle, jolla on vain kaksi kirjainta. Salo-kirjainyhdistelmää esiintyy paitsi suomessa myös ainakin tanskassa, ranskassa, katalaanissa ja italiassa.

Tein sen minkä voin ja rajasin haun vain niihin videoihin, joiden dc:language on fi. Tämä päätös tiputtaa kuitenkin tuloksesta pois ulkomaista alkuperää olevat videot jotka todella liittyvät Suomeen ja ne, joissa tätä Dublin Core -elementtiä ei ole annettu. Toisaalta suomenruotsalaisten kuntien hakutulos siistiytyy, sillä oletettavasti haaviin ei näin jää Ruotsin samannimisiä kuntia.


Kuntakartan plottaus absoluuttisilla luvuilla kävi helposti soRvi-blogin esimerkkien avulla. Jouduin tosin jättämään Helsingin kokonaan pois, jotta muut kunnat pääsivät esille. Data vaatisi oikeastaan logaritmisen asteikon; Helsinki poikkeaa niin paljon muista.

Ensimmäisessä kartassa kunnat ilman Helsinkiä, toisessa ne kunnat joihin liittyviä videoita löytyi enintään 20.

Alla matkin suoraan sitä, miten Datavaalit havainnollisti ahkerimpia sosiaalisen median käyttäjiä.

Kärkikolmikko ei yllätä: Helsinki, Turku ja Tampere. Ystävämme Ii yltää 25 ensimmäisen joukkoon. Pääkaupunkiseudun nykyisistä isoista kaupungeista Vantaalla näyttäisi olevan videoita vain muutama. Vantaasta tuli kuitenkin kunnan nimi vasta 1970-luvulla, ja uusimmat Europeanan videot ovat nähtävästi 1960-luvulta. Vantaa viittaakin näissä Vantaanjokeen. Hyvinkään lukua selittää mm. Kone Oyj ja Herlinin suku. Tunisian presidentti Bourgiba vieraili 1960-luvun alussa Herlineillä.


Seuraavaksi suhteutin videoiden määrän kunnan asukaslukuun. Sorvi tarjoaa valmiin funktion, joka hakee asukasluvut suoraan Tilastokeskuksesta. Vuoden 2013 alusta lukien kuntien määrä väheni vajaalla 20:lla kuntaliitosten myötä. Kunnat ja kuntarajat kuvaavat tässä kuitenkin mennyttä aikaa, vuotta 2012. Lisäsin entisille kunnille asukasmäärän käsin, mutta niiden kuntien lukuun en koskenut, joihin nämä kunnat yhdistettiin.

Nyt erottuvat suuruusjärjestyksessä Vaala, Sund, Kolari, Rautavaara ja Helsinki. Moni on kuitenkin väärä positiivinen. Kai Sundström -nimistä henkilöä videoitiin kahteen otteeseen 1940-luvulla. Näin ollen algoritmini antoi kaksi videopistettä pienelle ahvenanmaalaiselle Sundin kunnalle. Kolarin asema johtuu vain ja ainoastaan otsikoista Kolari Helsingissä. Tapio Rautavaara taas oli 50-luvulla julkisuuden henkilö monella alalla, itse Rautavaaran kunnasta ei videoita löydy. Mutta entä Vaala? Tämä reilun 3000 asukkaan kunta Kainuussa on vanhaa asutusaluetta, mutta sen lisäksi myös sukunimikaima elokuvaohjaaja Valentin Vaalalle.

Sivumennen sanoen opin Wikipediasta, että sana vaala liittyy sekin veteen. Englanninkielinen Wikipedia-artikkeli mainitsee, että se on the phase in a river just before rapids.

Helsinki on siis väkilukuunkin suhteutettuna videoykkönen. Seuraavana tulevat oikeat videokunnat Karjalohja ja Vihanti. Suomi-Filmi videouutisoi näistä kunnista politiikan ja talouden näkökulmasta. Pääministeri Edwin Linkomiehen kesäpaikka oli Karjalohjalla, ja Vihantiin rakennettiin 1950-luvun alussa valtion toimesta rautatie. Outokumpu Oyj perusti Vihantiin sinkkirikastekaivoksen. Kaivos toimi vuosina 1954-1992, tietää Wikipedia ja jatkaa:

Kaivoksen tuotantorakennukset purettiin pari vuotta myöhemmin ja kaivostorni räjäytettiin. Myös kaivokselta Vihannin asemalle vienyt junarata on purettu Vihannin päässä olevaa 1,5 kilometrin pituista vetoraidepätkää lukuunottamatta. Kaivoksen toimistorakennukset säilytettiin. Osa kaivosalueesta on aidattu sortumavaaran vuoksi.

Vihannin kuntaa ei enää ole. Se liitettiin vuoden 2013 alusta Raaheen.

Paikan haku

GeoNames-tietokanta vaikuttaa lupaavalta. Ajattelin jo nyt hyödyntää geonames R-kirjastoa kuntien GeoNameID:n selvittämiseen, mutta en päässyt alkua pidemmälle. Palvelu kyllä vastaa ja palauttaa dataa. Liikaakin, aloittelijalle. Kysely on ilmeisesti rakennettava hyvinkin yksityiskohtaisesti kohdistumaan vain tietyntyyppisiin taajamiin.

Yritin myös ujuttaa SPARQL-kyselyyn soRvin tarjoamia MML:n kuntakoordinaatteja. Europeanan SPARQL-editorissa on valmis esimerkki Time enrichment statements produced by Europeana for provided objects. Se antaa kuitenkin ymmärtää, että metatieto-rikastukset mm. ajalle ja paikalle olisivat toistaiseksi haettavissa vain yleisellä merkkijonohaulla, joten luovutin.

Tuore Europeana Business Plan 2013 kertoo tammikuun tilanteen paikkatiedoista. Ne löytyvät 27.5 prosentissa kaikesta aineistosta.

Paljonko Europeanassa sitten on Suomen GeoNameID:llä <http://sws.geonames.org/660013/> varustettuja RDF-kolmikkoja resurssityypeittäin (image, sound, text, video) ja lähteittäin? Kopioi tästä kysely, liimaa SPARQL-editoriin ja lähetä.

Dataa ja videonauhaa

Linkitetty avoin data on Europeana-pilotti. Datanarkkarille se tarjoaa mahdollisuuden ynnäillä vaikka tilastoja, mutta ne ovat vain sivutuote. Datan päätarkoitus on kypsyttää ideoita verkkopalveluiksi. Liikkuvalla kuvalla ja äänellä on kysyntää. Niitä aiotaankin saada lisää, linjaa Business Plan:

Actively pursue both large and small institutions to contribute AV material through national aggregators or audiovisual projects. AV material currently makes up less than 3% of the database, while research shows that this material gets most attention from end-users. (s. 9)


EDIT 16.3.: Missä mahtoivat silmäni olla, kun katsoin asukaslukuun suhteutettua tilastoa? En osaa selittää. Oli miten oli, Helsinki ei suinkaan ole videoykkönen vaan Saarijärvi! Lisäksi Vihannin ja Karjalohjan ohittavat Aura, Ruovesi, Halsua ja Tammela. Aura on tosin siinä ja siinä, koska toinen kahdesta videosta liittyy Teuvo Auraan.


Europeana and Saxon-CE

Time to celebrate! Today is the International Open Data Day, and yesterday Michael Kay tweeted about the open source version of Saxon-CE (XSLT 2.0 in the browser).

Thanks to Bob DuCharme's recent blog post, I managed to query the Europeana SPARQL endpoint on a selection of audio files from Finland. The collection belongs to Svenska Litteratursällskapet i Finland, and it contains interviews of Finland-Swedish people at different ages. The query result is downloaded as XML. With this page you can test how Saxon-CE renders the file in your browser. Have a look at the source code. The XSL file is only slightly modified from the Saxon-CE Book List sample application, and CSS is untouched.


Millä Suomi twiittaa?

Vielä kerran suomenruotsalaisen ja suomalaisen tweettailun eroista ja yhtäläisyyksistä.

Twitter-klienttien Top4-järjestys on sama, mutta suomenruotsalaisilla Twitter for iPhone on selvästi suositumpi kuin TweetDeck. Suomenkielisten käyttämien klienttien kirjo taas on paljon suurempi. Testaillaanko siellä enemmän uutta? Jaetaan aineistoa enemmän suoraan muista lähteistä? Vertailuaineistojen koko on sama (n. 12000 tweettiä), mutta aineistot eivät ole täysin vertailukelpoisia keskenään, koska suomalaisia on 20 enemmän. Mitä enemmän ihmisiä, sitä enemmän erilaisia klienttejä, luultavasti.

Suomalaisten Top 5:

  1. Twitter.com
  2. Twitter for iPhone
  3. TweetDeck
  4. Twitter for iPad
  5. Tweet Button (suomenruotsalaisilla 8.)

ja suomenruotsalaisten:

  1. Twitter.com
  2. Twitter for iPhone
  3. TweetDeck
  4. Twitter for iPad
  5. Twitter for Android (suomalaisilla 9.)

Pistekaavioiden ulkoasussa on runsaasti toivomisen varaa, mutta yleiskuva erottunee: suomalaiset (PDF) ja suomenruotsalaiset (PDF). R-koodi klienttitiedon hakuun ja käsittelyyn.


Top twittrare

Här är svenskfinlands bästa twittrare, meddelade Yle X3M idag. Fint! För jämförelsens skull bedrev jag nu lite hembakad text mining också med tweeps av de här 80 personer. Urvalets storlek är detsamma som förr: 200 per person.

AFAIK så finns det ingen officiell Twitter list. Därför kunde jag inte direkt använda den gamla koden utan måste först plocka ut namn ur den ovannämda websidan.

Klustren ser en smula olika ut här än i den finska. Med mina helt amatörmässiga 3D text mining glasögon kan jag urskilja en aning mera variation i ordförråd. Men, det kan helt enkelt bero på hur det svenska språket är uppbyggt (och hur R och dess tm paket manipulerar text), och inte säga någonting alls om våra inhemska, svenskspråkiga Twitter-vänner. Artiga och vänliga tweeps här också.

Två personer tycks vara särskilt flitigt refererade, vilket tyder också på aktivt personligt twittrande: Peppe Öhman (peppepeppepeppe) och Sandra Eriksson (sandraeeriksson).